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1. INTRODUCTION

Let X be a normed linear space over the field of the real or complex
numbers and let X’ be its dual space. We study the set-valued mapping

2x):={LeX 'Ll <Iland L(x) = | x ].

which associates to each x € X the peak ser X(x).

First, we apply the known fact that 2 is upper semicontinuous [12, 3] to
some problems in the theory of Chebyshev-approximation of continuous
vector-values functions.

Let V be a subset of X and xe.X. An element s, V' is called a best
approximation for x by elements of the set V' whenever || x — ] —
min{ffx — v :ve V. For xe X, we denote by Pp(x) the set of all best
approximations for x by elements of V. The set-valued mapping Py is called
the metric projection associated with V.

For T a locally compact Hausdorff-space, Cy(T, X) denotes the space of
continuous functions f: 7 -» X which vanish at infinity, that is for each
€ = 0 the set

e T ) e
is compact. This linear space is provided with the Chebyshev-norm
Ve max{ ()i e T

(In order to distinguish between the norms in Cy(7, X) and X we shall some-
times denote the latter by I} - ['y). If X is the real axis R and 7 a compact space
we shall simply write C(7) instead of Cy(7, R).

We prove by a direct method which does not use the representation of the

262

Copyright © 1973 by Academic Press, Inc.
All rights of reproduction in any form reserved.



ON THE PEAK-SET-MAPPING 263

extreme points of the unit-ball in the dual space of Cy(T, X), that the gener-
alized Kolmogorov-criterion is always sufficient to ensure that v, €} be a
best approximation for fe Cy(T, X). Then we characterize the so-called
Kolmogorov-sets, that is, those sets for which the Kolmogorov-criterion is
also necessary. In the limiting cases this characterization reduces to one
which is known [4, 5, 6, 10]. A direct approach to such a characterization is
desirable because the results for Cy(7T. X) are rather difficult to derive from
the general results for normed linear spaces, cf. for instance [10], where such
a derivation is performed for C(T, H). where T is a compact and /7 a pre-
Hilbert space.

In the second part of the paper we study spaces X which have the property
that to every point x, € X there exist certain neighborhoods U and points
xy € U such that X(x) C2(x,) for all xe U. We show that in spaces with
this maximum property each moon is a Kolmogorov-set. (The concept of a
moon was introduced and studied by Amir and Deutsch [1].) We show that
the (A)-spaces of Brosowski and Deutsch [7] have this maximum property.
Furthermore, we demonstrate that the (QP)-spaces of Amir and Deutsch [1]
are characterized by the property that each x,€ X has a neighborhood U
such that XZ(x) C X(x,) for every x € U. Finally, we point out that spaces
which have this maximum property of the peak-set-mapping are strongly
nonlunar in the sense of Amir and Deutsch [1].

In the third part we show how the (P)-spaces of Brown [11] are character-
ized by an elementary property of 2. Furthermore, we demonstrate that in
(P)-spaces the continuity of the set-valued metric projection P, {(x) associated
with a subset V' of X, which was proved by Brown for linear subspaces
only, also holds for certain convex approximatively compact sets V. An
example will show that this continuity is not valid for an arbitrary convex
compact set V.

2. T UPPER SEMICONTINUITY OF 2
We begin by recalling some definitions (cf. [2, p. 114]).

Dermvimion 2.1, Let T and Y be topological spaces.

(a) A set-valued mapping A: 7T — Y is called upper semiccntinuous
if for each 1, € T and each open set U C Y with A(z,)) C U there is a neigh-
borhood V of ¢, such that A(r) C U forall re V.

(b) A set-valued mapping A: T — Y is called lower semicontinuous if
for each t;& T and each open set UC Y with A(t,)) " U = & there is a
neighborhood ¥V of ¢, such that A(H N U + & forallte V.
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The terms upper and lower semicontinuous will be abbreviated by usc and
Isc, respectively. A set-valued mapping 4: 7— Y is called continuous if it
is usc and Isc.

We assume throughout this paper that the closed unit ball

BX')i= {Le X't Li 1]

in the dual space X’ is endowed with the weak topology o(X’, X). Hence,
B(X') ts compact.

Lemma 2.2. The bilinear function Wix, L)y:= L(x) is continuous on
X X B(X").
Proof. Lletx,e X, Lye B(X’) and € - 0. Define
Ui=ixe X:ix — x4 < €2}
and
Vi={Le B(X'):| Lixy) — Lo(xg)| << €/2}.

Then U and V' are neighborhoods of x, and L,, respectively. For
(x, L)e U x V, we obtain

[ P(x, L) — Wxg, Lo)i L(x) — Lylxg)f
S L(x) — Lixg)] | L(xg) — L(x)]

Ix—x 2 <

CoROLLARY 2.3. Let T be a topological space, and > T — X a continuous
mapping. Then the function ©(1, L) :== L{f(1)) is continuous on T X B(X').

LEMMA 2.4. The set-valued mapping 2. X — B(X"), which is defined by

2(x) = {LeBX'): L{x)=1xi},
s usc.

Proof. By virtue of (2.2) the function F(x, L) :— L(x) -~ [ x|l is contin-
uous on X X B(X"). The graph I" of X may be represented by

Ii=={(x, LYye X x B(X"): LeX(x))
= {(x, Lye X X B(X'): F(x, L) = 0.

Hence, I’ is closed, and 2 is usc {(cf. [2, p. 118]).

From the continuity properties of a set-valued mapping follow continuity
properties for some associated real functions as demonstrated in the next
lemma, which is a consequence of a theorem of Berge [2, p. 122, Theorem 2].
For single-valued real functions we use the usual semicontinuity concepts
which must not be confused with those of definition (2.1).
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Lemma 2.5, Let T be a topological space, A: T — B(X') an usc set-valued
mapping such that A(t) is nonvoid and compact for every te T, and let
f: T— X be a continuous function. Then the real functions

¢(1) 1= min{Re L(f (1)) : L € A(1)},
(t) := max{Re L(f(1)) : L e A(1)]

are Isc and usc, respectively.

From (2.4) and (2.5) we may conclude the following corollary immediately.

COROLLARY 2.6. Let T be a topological space and §, g: T — X contin-
wous functions. Then the real function

(1) := min{Re L{f(1)) : L € Z(g(1))}

is Isc.

3. THE GENERALIZED KOLMOGOROV CRITERION IN C(T, X)

By &(X’) we denote the set of extreme points of B(X’) and, for x € X, by
&(x) := Ep(2(x)) the set of the extreme points of 2(x). For f'e C(T, X), we
define

M(fy:=iteT: fO)lx=1/].

Best approximations in a normed linear space X may be characterized by
use of Singer’s generalization of the classical Kolmogorov criterion [14,
p. 62]: Let ¥ be a linear subspace of X, x € X\V and v, € V. Then v, is in
Py(x) if and only if

min{Re L{v — vy) : L € &{x — vg)} =2 0, forall veV.

The application of this criterion in the space Cy(T, X) requires knowledge
of the extremal functionals on Cy(7, X). Such knowledge is rather difficult
to obtain. In the case T compact and X a Banach space Singer [14, p. 191],
and in the general case Brosowski and Deutsch [7], have proved that a linear
functional /1 on Cy(T, X) is extremal if and only if there is a point 1, T
and an extreme point L, of B(X") such that

A(f) = Ly(f(t) for all fe C(T, X).

We have mentioned these results in order to show that the following
results, which we arrive at by a direct approach, fit in the general framework
of theorems of characterization in normed linear spaces.
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At first we state the sufficiency part of the generalized Kolmogorov cri-
terion.

THEOREM 3.1. Let V be a subser of C(T. X). and | and v, elements of
Co(T, X\V and V, respectively. Whenever for each v V the inequality
min{Re L(1(7) — vy(t)) 1 t &€ M(f — vy) and L € &(f(t) ~— vy(1)} = 0 (1)
holds, then v, is a best approximation jor [ by elements of V.

Remark. At first we show that the minimum in (1) is always attained.
Since the set

o=, L)yeT <X BX )y re M(f— vyyand Le X(f{1) — vlt))
is a compact subset of 7 > B(X'). and the function
D1, Ly~ Re L(vlr) — v{t))
is continuous on T % B(X'), there exists (7, , Ly} € I'" such that
D(1,, Ly) = minjD(t, Ly: (1. Lye I},
The set

1Ly € Z(f (1) — vy(1,) 1 Pleg . Ly)
== min{@(f() . L) Le Z(f(f()) - I'l()(I(J)):v'

is a nonvoid extremal subset of X(f(z,) — vy(z,)). Therefore, it contains
extreme points. These are also extreme points of 2'(f(¢)) — vy(1,))- Thus, the
functional £, may be chosen in &(f(t,) - ry(fe}), and the minimum in (1)
is attained.

Proof of theorem 3.1. Suppose that r, is not a best approximation for
/. Then there exists an element ¢ € ¥ such that

P = o(t)ly < f— 1, forall reT. 2)
By (1), there is t, € M(/ — vy) and Ly e E(f(1y) — tolfs)) with
Re Ly(v(ty) — vylty)) = 0.
Hence, it follows that

[ (e) — vlt)lly = Re Ly(f(Zo) — t(ty)
= Re Ly(f(1,) — vy(ty)) — Re Ly(o(1,) — vo(te))
= | f— vyl — Re Ly(v(ty) — tylly)) = [ — vy,

which contradicts the supposed inequality (2).
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It is well known that the Kolmogorov criterion is always necessary for
convex but not for arbitrary sets V. Those sets V for which the Kolmogorov
criterion is always necessary are called Kolmogoror sets [10]. In order to
describe these sets geometrically Brosowski [4, 6] and Brosowski and
Wegmann [10] introduced the concept of regular sets. So as to avoid further
misuse of the term “‘regular’” we introduce here instead a property (R).

DeFNITION 3.2, Let V' be a subset of C(T, X). We say v, e V is an (R)-
point of Vif the following requirement is fulfilled: Whenever for elements
Je CAT, X), veV, and an usc set-valued mapping 4: T -+ B(X'). which
takes values in the set of closed subsets of B(X’) such that A(r) D &(f(1)) for
1 = M(f) the inequality

Re L(v(r) — vy(t)) > 0

holds for all te M(f) and L€ A(t) N E(X’) then there exists for every
A >0 an element v, € V such that ' v, — ¢, << A and

Re L{v)(1) — vy(1)) >~ Re L(f(t)) — /!

forre M(f)and L e A(t) N E(X).

LEMMA 3.3. Let V be a subset of Cy(T, X), vy, an (R)-point of V and
e CAT, X). Whenever for an element v € V the inequality

Re L(v(t) — vy(2)) >> 0 holds for te M(f— v,) and Le&(f(t) — v,t)),

then there is for every A > 0 an element v, € V such that | vy — v,'] <7 X and

= < =l

Proof. From the assumption it follows that even Re L{v(t) — v,(1)) > 0
fortc M(f — vy) and L < X(f(z) - v,(t)). The set M(/ 1) is compact, and
the function

$(r) 2= min{Re L(e(r) — vo(1)) 1 L € Z(f(1) —~ vy(1))] 3)

is les. by virtue of (2.6). Therefore, we have (1) = a .~ 0 for 1€ M(f — v,).

The open set Uy 1= {1 T: ¢(r) = a/2} contains M(f - vy). Since v — v,
vanishes at infinity, and ¢(¢) << il o(t) — vo(t) 'y , the set U is relatively com-
pact. U, is a neighborhood of the compact set M(f — ry). Since a locally
compact space is a regular space, the closed neighborhoods of a compact
set form a basis of neighborhoods. Hence, there exists an open set {, such
that

M(f— ) CU,CU,CU,.

640/8/ 3-6
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Forre TWU,, we have

1F@) ol g <o L f oyt (4)
From the inclusion U, C U, it follows that

Re L(v(t) — vy(t)) "+ a/2 >0 (3)

holds for teU, and Le2(f(r) — vyt)). Hence. v(r) - vy(t) 5+ 0 and
f(ty — vy(t) = Oforall te U, .
Since U, is compact,

ay = mindi f(1) ~ v)t)y 1€ U,
is positive. The function
pa(1) = min(l, ay/|[ f(£) — vy(t)]x)

is continuous. (For ¢ with . f(r) — v)(t)'y = 0 put p,(r) = 1.) Since ¢ as
defined in (3) is Isc, the set

Ci={reT:¢@) = 0

is closed, and C N U, = @.

There exists a continuous function p, such that 0 < py(1) < 1, po(t) = 1
for te U, and py(t) = 0 outside U; (cf. [13, p. 247]). Then in particular
pa(t) vanishes for r e C.

Now define p(¢) :== py(t) - pa(2) and fi(1) := vylt) + p()f(t) — U"(_t)) for
t € T. By construction, we obtain f; € C(7, X), T\CD M(f, - v,) O U, and
2(f[(1) — ve(1)) = Z(f(t) — vy(¢)) for those r which have f,(f) — vo(t) # 0.
Hence, it follows that Re L(v(f) — v,(t)) =0 for re M(f, —v,) and
L e 2(fi(t) — vy(1)).

By virtue of the lower semicontinuity of the function
¢i(t) := min{Re L(o(t) — vo(t) : L € Z(fi(t) — ty(1))]

we have ¢,(¢) = b >0, for re M(fy — v,) and L €2(fi(t) — vy(t)). For
every t € M(f, — v,), the set

A(t) :={L e B(X") : Re L(v(r) — vy(t)) = b/2]

is closed, and contains &( f,(¢) — v,(¢)). The set-valued mapping 4: 7 — B(X")
is usc since the function D(¢, L) :== Re L(e(1} — v,(1)) is continuous on
T < B(X"), by (2.3), and the graph of 4

T(A) = {(t, Lye T x BX'): (1, L) = b2
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is closed. Now, since z, is an (R)-point of V, there exists for every A = 0 an
element v, € V such that © v, — ¢, <2 A and

Re L(zy(1) -- vo(r)) = Re L{fi(1) — o)) — /3 — vy
for te M(/, — v and Le AN EXY (6)

Since | f(r) - vy(t); x vanishes at infinity and T'U, is closed and disjoint
from M(f — vg). it follows that

e, = maxi f(1) — vty vt TVUsy < =1y
The set-valued mapping
A =1L e BX") : Re L{v(r) — vt)) - hi2}
is usc, by the same reasons as A. Since
Ay O Z(fi() —v()) = © for te M(f; —~ ty)
the function
bu(1) 1= max{Re L{ /(1) — vy(1}) 1 L € A,(1)}
is such that
bolt) < [filr) — vy(Dlix = 1.y — vy i
for 1 e M(f; — to). By (2.5) ¢, is usc. So we have
ey 1= maxidy(t) 1 te M(fy — v <<ify — 5.
Choose A so that
O<A<mn(f—ry —e . f1—rv, —e)
Then we obtain for te T" U,

G = at) x o T f() = eglt) x o To(r) = )iy
e -+ A < f— il

Now let 7 be in U,. Then 1 is in M(f, — v,), since U, T M(f, — v,). For
L e A(t) N 6(X’') we obtain by (6)

Re L(fi(r) — vi(1)) = Re L(fi (1) — 14(t)) = Re L(zyft) — v, (t)

< fy el
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On the other hand, for L € A,(¢) the inequality

Re L{fi(f) -~ ©v)(1)) = Re L{fi{1) — (1)) + Re L(zy(t) — v,(t))
= ¢3(’) A< AN

holds.
Since (A(2) N E(X") W A(t) D &(X7), it follows that

FAE) oDy T vl
By construction of f, , we have

filt) — vit) = p(F{t) - volt))

with a function p(¢) such that O = p(r) :.. 1. Therefore, for every re U, , we
obtain
A = ety = A — [0 xR - oDy
) - 0 e ) - e L) o)y

which yields finally
1) oy <) — el ¢ forall reT.

We are now ready to give the promised characterization of Kolmogorov
sets in Cy(T, X).

THEOREM 3.4. A set V C C(T, X) is a Kolinogorov set if and only if each
point vy of V'is an (R)-point of V.

Proof. Let 1V be a Kolmogorov set. Suppose that there exists some
to € ¥ which is not an (R)-point. That is, there exist fe C(T, X), v = } and
an usc set-valued mapping A: T-— B(X’), which takes values in the set of
closed subsets of B(X') with A(¢) D E(f(¢) — vy(1)), for t € M(f -- 1,), such
that

Re L(v(t) — vy(t)) > 0

tor te M(f-—~uvy) and LeAl)NEX), (6a)

and there exists A - O such that, for every ¢, € V¥ with | ¢, — r, i < A, there
exist t, € M(f — vy and L, A(t) N &(X') so that

Re Ly(naty) — vy(fp)) <10 Re Lo(f(1) — vyltg)) — { ft) — volta)ix -
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Hence, it follows that

W= oo = [ f(te) — volte)x = Re Lo(f(1y) — v\(ty))
S () = vty = 1 f — oyl

and. therefore, v, is a best approximation for f by elements of
Vy,:i={veV:ilv—u, <AL

Since V' is a Kolmogorov set. each local minimum of the function
WY(vy:= | f — v |on Vis a global one (cf. [10, p. 382]) and the Kolmogorov
criterion is necessary, implying that

min{Re L{v(t) — vy(1)) 1 te M(f - v,),
Led(fity — vt =0 for every v e V.

This contradicts (6a). Hence, ¢, must be an (R)-point.

Now let each point of V" be an (R)-point. Suppose V" is not a Kolmogorov
set. Then there exist f e Cy(7, X) and ¢, € V' such that v, is a best approxima-
tion for £, but there is a r € V' such that

Re L(v(t) — vy(t)) = 0
for te M(f--1,) and Le&(f(t) — vyt)).

Since v, is an (R)-point, by Lemma 3.3, there is an element v, = V' with
= ey < f == 1y 1], that is, ¢, is not a best approximation for f by elements
of V. This contradicts our assumption. Thus. V' has to be a Kolmogorov set.

So as to give an application of Definition 3.2 and to point out that the
most familiar Kolmogorov sets, the convex sets, are easily detected by means

of Theorem 3.4; we now prove the following lemma.

LemMAa 3.5, Let V be a subset of C(T, X) which is star-shaped about some
point vty € V. Then v, is an (R)-point of V.

Proof. Let fe CyT, X), veV, and let 4: T— B(X’) be a set-valued
mapping with the properties required in Definition 3.2. For A > 0, choose
p such that

0 <p <min(lr —t,l, A)

and define

T Y LS U T .
- (1 le— !‘n‘;!) fo v — ol
Since V is star-shaped about v, , the element ¢, is in V. By construction, we
obtain
foy =y = p <0 A
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Re L)1) ~ ro(1)) = -—bo Re L(r(1) — 1y(1))

U by
0 = Re L{firyy 1 [
for 7= M(fY and L= A O E(X'L

Hence, v, is an (R)-point of .

Now we consider special cases of Definition 3.2, If 7 consists of just one
point then Cy(T, X) is equal to X and Definition 3.2 of an (R)-point of a
subset V of C(T. ) reduces exactly to that of a regular point ¢, of ™ inter-
preted as a subset of X as introduced in [10].

For H a pre-Hilbert space with inner product (-, ) and 7 a compact
space, the concept of a regular point ¢, of a subset I of Cy(T, H) was stated
by Brosowski [4, 6] as follows: A point ¢, & V' 1s called regular if and only
if, for every v € V, for every closed subset € C 7 and for every continuous
function f° C — H with

Re(f(r), v(r) — v}y - 0 for e,

there exists, for each A - 0, an element ¢, ¢ V' such that ¢, — v, < A and
2 Re(f(1), v(1) — o)) = [ ey() — colO)s for reC.

First, we note that for x € H the peak set 2(x) consists of the only func-
tional L defined by

L{y) = (y, x/l x 1) for yes H.

Now let v, be a regular point of V. and let f'e C(T. H). ve I, and let
A: T-> B(H’) be an usc set-valued mapping such that A(t) D &(f(¢)) and
Re L(v(t) — vy(r)) = O for r= M(f) and L = A(t) " S(H'). Then in particular
Re(f (1), v(t) — vy(1)) > 0 holds for r= M(f), and since r, is a regular point
of ¥ there exists for every A - 0a v, VsothatV ¢, - 1,7 < Aand

2 Re(f(t), vylt) — vot)) = ieylt) - vyt D% for e M(f).
This is equivalent to
HF) = vglt) - ety iy el ) for each t & M(f).

Therefore.

Re Lip(1} - ryr))  Re Lifle)) — ' 7l
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holds for all re M(f) and L e B(H’). in particular for the functionals
L e A(t) N §(H') as required in Definition 3.2.

The proof of the converse statement, that each (R)-point in Cy(T, H) is a
regular point is more difficult and makes use of parts of the proof of Lem-
ma 3.3. Although both concepts are equivalent, the notion of an (R)-point
is formally weaker than that of a regular point.

4. MAXIMUM PROPERTIES OF 2

In the Euclidean R? the only sets U on which Z(x) attains a greatest
value in the C-ordering are the sets with0 € U and the sets which consist of
positive mutiples of one single vector. But there are spaces where each point
admits a basis of neighborhoods U which contain points x,; with Z(x) C 2'(x)
for all x € U. The space R? with the Chebyshev-norm is a simple example. We
demonstrate that these spaces have some interest in investigations in “moons”
recently done by Amir, Brosowski, and Deutsch [1, 7].

We recall some definitions and introduce some notations. For x and v,
in X we define the open cone

K(vy, x):={ve X : Re L{t — 1) > 0for L € X(x -- vy}
Furthermore, we define the unit sphere in X
S(X):={xeX:|x]=1]
and the open ball
B(x,,e):={xeX:|x—x < ¢

with center x, and radius e,

Let V be a subset of X. An element vye V' is called a lunar point if
vo€ VN K(vy, x) whenever xe X and V N K(v,, x) # @. The set V is
called a moon if each of its points is lunar.

The definition of a Kolmogorov set reads in this context as follows: Vis a
Kolmogorov set if and only if V' " K(v,, x) = & whenever v, € V is a best
approximation for x.

Each Kolmogorov set is a moon. The converse is not true in general. It
has been noted [1, 7] that in certain familiar spaces, such as C(7) and [,
each moon is a Kolmogorov set. Now we give a description of these spaces
in terms of a property (MP) (“maximum peak set’) of 2.
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DEFINITION 4.1. A space X is said to have property (MP) if for each
X, € X there exists a system 2 of neighborhoods U of x, such that

(a) Forevery U e U there is x; = " with
2(x) C X(x) forall xe U,

(b) For every subset W C X which is a neighborhood of 2(x,) in the
topology o(X'. X) there exists U in ¥ such that X(x,.)C .

For the remainder of this section we assume that the spaces X are over the
field of the real numbers, because no spaces over the complex field have
property (MP). To show this, let X" have property (MP), and let x, = 0 be
an element of X. Then there exists a neighborhood U of x, such that x; = 0
and X(x) C X(xy) for all x in U. If X is over the complex field, there exists
some scalar « with Im(a) -~ 0 such that xx, = U. Since for L X(xax,) the
equality L(axy) == | x i+ x4 holds, the functional L;:= «fi x| L is in
2(x,). Hence, we obtain the equality

. . X . X
Xy | = Lyxy) - Ty L{xy) = T HRVINR

|
which is impossible for x; = 0.

THEOREM 4.2, If X has the property (MP) then every moon is a Koimo-
gorov set.

Proof. Let V be a moon and ¢, € V' a best approximation for f'= } by
elements of V. We have to show

min{l(v - vy Led(f - )t - 0

for every v € V. Suppose that there is a ¢ in | such that Lz -- vy) .- O for
all Le &(f — vy). Then L(r - vy) = O0forall L2 2(f  v))and L(r - ry)
a 0 since 2(f — v,) is compact. The set

Wi ile X' Le o rg) a2

is an open neighborhood of X(f - r,). Since X has property (MP) there 1s 1
neighborhood U of / ~ v, and g, € U such that 2(g) C X(gy) C W for all
ge U. Forf]:= vy = g, it follows that

Lv — 1) 0 for all L = 2(/f; — ry).

thatis v € K(r, , /7). Since ¥ is a moon there exists for every A~ 0 an element
vy € Vsuch thatl v, — ¢,/ < A and

L, — vy 0 for all L e Z(f; — v,). (7)
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We choose A >0 so small that B(f-— r,,)CU, and show that
L= w <l — vl
Suppose that ||/ — v, | = ||/ — v, ]. Then the outer part
Zyi={veZ |f—rv: = f—u,l}
of the segment
Z:=1v, 4+ vy —v): 0.8 <1}

is convex and, since v; € Z, by assumption, nonvoid. There exists a functional,
which separates Z, from the ball B(/. ||/ — v, "), that is, there exists L, e X’
such that! L,]| = 1 and

sup{Ly(v) v e Zy} = inf{Lyv) 1 ve B — v, '),
whence it follows that
Lyw, — vy < 0. (8)
Define v := v, - 6, — v,) and
O 1= min{0 € [0, 1]: [ f — o, = [ — o l}-
Then we have
Lyve, = f) = mf{Lyo — f) :ve B(f,If — 0o 1)} = — [lf — vy
= —1f—uv L

and, therefore, L, 2(f — vy ). Since ve, € Bty , A), the element j°— Le, 18
in U and the functional L is in Z(f; — v,), and (8) contradicts (7). Therefore,
we have | f— v,| < | f— v,!, which contradicts the fact that v, is a best
approximation for f by elements of V. Thus, the theorem is proved.

Now we give two examples of spaces with property (MP). Let first 7 be a
compact Hausdorff space. We show that X := C(T') has property (MP). Let
f+ 0 be in C(T) and define M(f):={teT:{f()l =|/fl}. The peak set
2(f) consists of all Radon measures p on T with || u | = 1, supp(u) C M(f),
and [ fdu =1/ f!. For e with 0 < € < || /| we define

N(e) = min(f () + € I [T — €)
Jo(t) 1= max(f(t) — e, — [l + o).

There is a continuous function p such that 0 <5 p(7) << 1,

p(t) =1 for te{teT:fi(t) = |f] —€
and

p(t) =0 for rtef{teT:f(t) = — fi+ €.

640/8/3~7
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The function
gult) = p(1) f1(t) -1 (1 = pl1)) fol )

has the property that M{gy) D M(g) foreachge U, :={gec X :jg—fI <
e}. Hence, 2(g) C X(g,) for all g € U, . Because the sets U, form a basis of
neighborhoods of the point f and the mapping 2 is usc, the requirements (a)
and (b) of Definition 4.1. are proved.

Let now X be the space /; of all sequences x = (x,) which are absolutely
summable, normed by || x" := Y., x; . The dual space X is identical
with /., the space of bounded sequences. For f'e X, 2(f) is the set of all 4
in [, such that /&, -= sign(f;) for all / with f; -4 0. For € > 0 define

U.i={gelh:f—gl e Ulgyn

where g, is given by

R Y/ (R A
Sv, 10 i 1] < e

Whenever g, , # 0 for an index i€ N, then sign(g,) = sign( g, ;) for all
ge U, , whence it follows that X(g) C 2(gy) for all g U, . Since

If—goil=Y fi—guil= Y Ifi]
i1 Ifil<e
converges to zero for € - 0, the sets U, thus defined form a basis of neighbor-
hoods of f, and /, has property (MP).

In the following the set £(X”) of the extreme points of the unit ball in X’
is provided with the topology which is induced by o(X’, X). The interior of
a subset 4 of £(X”) in this topology is denoted by A.

Brosowski and Deutsch [7] introduced a property (4) as follows: A normed
linear space X is said to have property (A) if for each f:4 0 in X there is a
family ( g.).r of elements g, in X such that

(1) For each open subset W of &(X’) which contains &(f) there is a
e T with é(g,) C W.

(2) ForeachreT,

SUp{L(f) i L= 6(XNE(&)} < /)

THEOREM 4.3.  Each space with property (A) has property (MP).

Proof. Let fbe an element in X and W C X’ a o(X’, X)-neighborhood of
2'(f). Since each compact convex set in a locally convex space admits a basis
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of convex and open neighborhoods, we may assume that W is convex and
open. Because X has property (A) there exists g, in X such that

E(N)CEg)Tog)CW.
In spaces with property (A) the set-valued mapping x — &(x) is usc (cf. [7]).
Hence, the set

Ui={heX 6 CTdoig)
is a neighborhood of f. We have ¢(g)Cé(g.)C W for each ge U and,
since W is a o(X’, X)-open convex subset of X', even 2(g)C 2(g,) C W for
allge U,

Amir and Deutsch [1] called an element #, of the sphere S(X) a quasipoly-

hedral point (or (QP)-point) if vy ¢ K(ry, 0) N S(X). The space X is called a
(QP)-space if each vy in S(X) is a (QP)-point. The following theorem shows

that the (QP)-spaces have property (MP), and gives a characterization of
(QP)-spaces in terms of a maximum property of 2\

TBEOREM 4.4. A space X is a (QP)-space if and only if for each x,€ X
there exists an € > 0 such that X{(x) C X(x,) for x € B(x, , ¢).

Proof. Let X be a (QP)-space and x, an element in X. For x, = 0 we
have 2(x,) == B(X') and the statement is trivial. Let now be x, == 0. Then
Yo i= X' xg 1 is a (QP)-point of S(X), that is, there exists 6 > 0 such that

B(yy, 0) ™ K(3y, 0) C B, 1).
From K(y,, 0) 2 B0, 1) it follows that generally
B(yy, 8N K(yy, 0) D B(yy, d) O B, 1).
Thus, we obtain
B(yy, 8) M K(yy,0) = B(y,,d) N BO, 1). 9

Now let y be in S(X) N B(y,, 8) and L, in 2'(»). In view of (9) there exists
n > 0 such that for either sign y 4+ n(y, — ») is in S(X). Thus, we obtain

1= Ly(y) = Lo(p) = nlo(yy — )

whence it follows that Ly(y,) = Ly(y) == I, that is L, e 2( ). If we choose
einsuchawaythatO < e < x,and |l x/i x| — yo il < Sfor|x — x,| < e
we get the statement of the theorem.
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To prove the inverse conclusion let x, be a point of S(X). By hypothesis
there is € = 0 such that Z'(x) C Z(x,) for x € B(x, , ). Now let

xe K(x,, 00 B(x,, € and L e X(x).
Since 2 (x) C Z(x,) we obtain
[ = xy0 = L{xg) = L(x) + L(xy — x)
=[x+ L(x, — x) > | x1,
that is x € B(0, 1). We have proved

K(x,. 0N B(x,, ¢) C B, 1),

whence it follows that x, is a (QP)-point.

In [1] the notion of a strongly nonlunar space was introduced. A point
2, of the unit sphere S(X) is called strongly nonfunar if for each u in K(z, , 0)
there is an x in B(0, 1) such that v € K(v,, x), and there exists € >> 0 so that
B(vg, €) N K(vy, x) C B0, 1). The space X is called strongly nonlunar if
each point z, € S(X) is strongly noniunar. Since in strongly nonlunar spaces
each moon is a Kolmogorov set [I, Theorem 2.18], Theorem 4.2 may also
be proved by means of the following theorem.

THEOREM 4.5. Whenever X has property (MP) then X is strongly nonlunar.

Proof. Let ¢, be in S(X) and v in K(v,, 0). This means L{z — ¢,) < 0
for all L in X(z,). Since X(v,) is compact, it follows that L{uz — ;) < a < 0
for all L € X(z,). The set

Wie=1LeX : Lu— ) < a2

is a neighborhood of 2(r,). Property (MP) ensures the existence of a neigh-
borhood U of z, and an element x,. in U such that X(v) C 2(x,) C W for
all v e U. We put x; :—= ¢, — x; and obtain by construction L(v — r,) << 0
for each L € 2(xy) = Z(ry — Xy), whence v € K(v, , x)).

There exists e > 0 such that B(v,, €) C U. Let v; be an element of

B(vy, €) N K(vy, xq). This means il v, — ¢,' < € and
L{v; — 1) < 0 for each L in Z(vy — xp). (10)
We show that |yl < 1. Suppose on the contrary fje, | = I, put 1, :=

vy + 0(v; — vy), and define

By :=max{f8e[0, 1]: vy || < 1}.
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Since ! vy || = 1, the closed segment [v, , v;] Is outside B(0, 1). By the separa-
tion theorem there exists a functional Loe X', | L, = 1, such that

sup{Ly(t) : ¢ € BO, D} < inf{Ly(v) : v € [z, , 1]

The supremum on the left side is equal to | L, [ = 1, and since vy is a common

boundary point of B(0, 1) and [v, , v,], we obtain L(v, ) = 1 = liwg || that

is Lye2(vg). By construction we have v, € U, whence it follows that

Lye2Z(xy) = 2Z(vy — x1). From Lgvy) << 0 and Ly»,) =1 we obtain
Ly(vy — vg) = 0, which contradicts (10). Thus, ' v, || < 1 is proved.

So far the proof has only used properties of the set Z(v, — x;). This set
does not change if v, — x; is multiplied by a positive factor. Passing to
X =y — '2—“2‘_1:0*6‘_—)(1—‘\ (to — xy),
we obtain K(vy, X) = K(ry, x1), x € K(vy, X1), [l X — v/} < ¢, and an argu-
ment similar to that used in the preceding part of the proof yields x € B(0, 1).

This completes the proof.

5. (P)-SPACES AND THE CONTINUITY OF THE SET-VALUED
METRIC PROJECTION

Brown [11] called a normed linear space X a (P)-space if for each pair of
elements x, z< X with | x + z ]| <C! x| there exist positive numbers ¢ and
b such that |y + cz| < ||y for all y with {| x — y || < b. The following
theorem characterizes (P)-spaces in terms of a property of 2.

THEOREM 5.1. X is a (P)-space if and only if for every x,, x, € X the follow-
ing requirement holds: If for all x in the open segment (x, , x,) the peak set
2(x) is a subset of the hyperplane H(x, — x,) :={L e X' : L(x; — x¢) = 0}
(which is orthogonal to x; — Xo) then there exists a neighborhood U of {x, , x;)
such that 2(x) C H(x; — x,) for all x e U.

Proof. Let first X be a (P)-space and x,, x; € X such that Z(x) C H(x; — x,)
for all xe(x,, x;), and let x, be an element of (x,.x;). We define
z 1= afx; — Xx,) with

0 < o < min(] x, — X, [| Xa — % D/} X1 — X .
Since L(z) = 0 for L € Z(x, 4 z), we obtain for either seign
| x| = max{Re L(x,) : L € Z(x - 2)}
= max{Re L(x, + z): LeX(x, & 2)}
=% + 2.
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Because X is a (P)-space there exist ¢ - 0 and a neighborhood U(x,) of x,
such that

1y = ez = by for ye Ulx,). (1)

For every fixed y, z the function (y) : = ¥ p | yz 7 is a convex function in
y. Hence, it follows by virtue of (11) that 'y -k vz ="y ! for all real y
with | v ! = ¢, That means that for each point y € U(x,) there is a segment
S == {y — cz, y 4+ ¢z), paralle! to (x,, x;), such that | xI! = "y | for all
x€.S. Hence, we obtain 2(y) C H(x; — x,), and the set

U:-s U Ul

o€ (i

is & neighborhood of (x, ., x;} with the property that Z(x) C H(x, - x,) for
all xe U.

Now we prove the converse implication. Let x,, = be elements of X such
that! x, + z | =]l x, . Without loss of generality, we may assume z = 0. We
consider two cases.

Let first |, x, -+ k2| <= | xy . Since the function

Flx)i= | xl— x4 3z

is continuous and F(x,) ~> 0 by assumption, there is a neighborhood U of
X, such that F(x) >- O for every x € U. Therefore, there exists # > O such that
with ¢ = 1/2 the inequality [y + ¢z < {y! holds for all y with

Ly %l b,
Now we consider the second case | xy +— 4z1 == | xof. Put x; := xy ~ z
and () := |l x, -+ vz |l. Then ¢ is convex and takes the value | x, || at the

three positions y = 0, &, 1; hence, y must be constant in the domain
0 <2y = 1. Thus, each x in the segment (x,, X;) has the norm ' x| -=
Il x, 1. Therefore, we have 2Z(x) C H(x, — x,) for every x in (xq, Xy).

By hypothesis there is a neighborhood U for (x,, x;) such that
2(x) C H(x; — x,) for all xe U. Now let x, be an element in (x,, x;). We
choose positive numbers & and ¢ in such a way that

xeX:ilx—x0 <20} CU and ¢ << bz
For each y with i y — x,:| <C b the inequality
lvdcz—x) 5 ly —x3ll - cllz]] << 2b
holds, and, therefore, y - ¢z is in U. Hence, we have

2(y 4 ez) C H(x; — xy)
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and
iyl = max{Re L(y): LeX(y + c2)}
=max{Re L(y + ¢z): Lc XZ(y + c2)} =y -+ cz]|l.

Generally, when so constructed, U is not a neighborhood of x,. Yet the
numbers b and ¢ obtained above are also applicable for x, as we shall now
see.

For fixed y and z the function {{(y) =il y = yz| is convex, and, hence,
the difference ¢(y) 1= (y) — Yy -~ ¢) is monotone nonincreasing. Let now
y be such that

vy —xl <0, Yo =  Xs — X llillZ| and Y11= Y 4yt

Then
L — Xl = |ly — X

and
Lyl =1y +ezll = $(0) — (c)
Z iy —dlyo+ ) =y + vzl —ily + vz + cz.
=|{nll—Ily+ez| =0

as was shown in the preceding part of the proof. Thus, the theorem is proved.
By means of this characterization we can now exhibit a class of (P)-spaces.

THEOREM 5.2. FEach (QP)-space X is a (P)-space.

Proof. Let x4, x; be elements of X such that 2(x) C H(x, — x;) for all
x 1n the segment (x,, x;). Since X is a (QP)-space there exists by virtue of
Theorem 4.4. for every x € X a neighborhood U(x) such that 2'(y) C 2(x)
for all y € U(x). The set
U:= J U

rE(rg. 2}

is a neighborhood of (x,, x,) with the property that 2(y) C H(x, — x,) for
every y e U.

Now we define for convex sets a property (P) and show that this property
is strongly related to (P)-spaces.

DeriniTiON 5.3, Let J be a convex subset of X. Then V has property (P)
if for every x € V, z € X with x + z € V there exist positive numbers ¢ and
b such that y 4 cz e V holds for every ye V with ||y — x| < b.
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Lemma 5.4. X is a (P)yspace if and only if the closed unit ball
B(X):= {xeX:| x|| <1} has property (P).

Proof. Let X be a (P)-space, x € B(X) and z € X such that x -}- z ¢ B(X).
If x is in the interior of B(X), then there exists e -0 such that
{yeX:!'x —y| << 2¢; CB(X), and with b := e and ¢ :== ¢/!! z || the require-
ments of (5.3) are fulfilled. Let now x be a boundary point of B(X). Then
x -+ ze B(X) implies || x - z|] </ x| and, since X is a (P)-space, there
exist positive numbers b and ¢ such that | y -~ cz il <{ ||y | for all y with
|y — xil << b. Therefore, 3y +-cz is in B(X) for all yeB(X) with
Ny — x| < b

Let now B(X) have property (P) and let x,z be in X such that
ilx -4z < ||x!. We may assume x % 0. Define x;, := x/[ x| and z, :=
z/l' x{|. Then x; is in the boundary of B(X) and x; + z, € B(X). Hence, there
exist b; > 0 and ¢, > 0 such that y -- ¢;z; € B(X) for all y e B(X) with
[y — x| <by. For y with |l yI' == 1, this implies that 1y + ¢z, < 1.
Choose b with 0 << b << 1 so that | y/il yli -~ x; || << b; holds for all y with
ly — x| << banddefinec :== (1 — b)-¢;. Thenforallywith|ly — x;/' < b
the inequality

Ly ez =]

Ly T

yi 'T’FTE“\‘Zlf‘ S
bl v I e

holds, since ¢/ y|! < ¢; and | y/|l yil — x| << b; . Hence, we obtain finally
Iy + ezl <|ylforall ywith[|y — xi < b/ x|.

Examples of sets with property (P) are linear subspaces, finite dimensional
convex polyhedra, and intersections of finite families of half-spaces. Now we
are ready to prove the continuity of the metric projection associated with
sets having property (P).

THEOREM 5.5. Let X be a (P)-space and V an approximatively compact
convex subset with property (P). Then the set-valued metric projection P,
associated with V' is continuous.

Proof. Since V is approximatively compact, P, is usc by a theorem of
Singer [14, p. 386]. Suppose that P, is not Isc. Then there exist fe€ X,
v, € Pu(f) and ¢ > O such that the set

{geXN PN B, &) = O}

is not a neighborhood of /, that is, there exists a sequence f,, which con-
verges to f, such that

PV(:fn) N By, , 51) = & for all n.
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Let v, be elements of P,(f,). Since V' is approximatively compact, a subse-
quence v, converges to an element v, € V, which is in Py(f).

The closed segment [v,, v,] is a subset of P,(f) since P, (f) is convex.
Define

S, 1= {v e [ty, v,] : For each neighborhood W of v the set
P,(f) N W is nonvoid for infinitely many #}.

By construction we have v, ¢ S| and ¢, € .5, . Now we show that S; is closed.
Let v, be a cluster point of S; and W a neighborhood of v; . Then there is an
element v, in S; such that W is also neighborhood of v,. Hence,
Pu(f,) N W == @ for infinitely many n.

Since S, is closed there is a maximal 4 in [0, 1] for which

Vg 1= Uy + vy — 1)
is in S; . By virtue of ¢, ¢S] and v, € S; we obtain § < 1 and
z:= (1 — 0)v, — vy) # 0.
Now we have v; = vy -+ z€ V and, using v, , vy € Pp(f),
ol = =zl <1 — vl

Since V has property (P) there exists 5 > 0 and ¢ >> 0 such that v + cze V
for all ve V with || v — v, || << b. Since X is a (P)-space, there exist 5 > 0
and ¢ > Osuchthat|lg —cz | < ||gf forallge X with || g — (f — v,)]| < b.
(Obviously, we may choose b and ¢ so that they are applicable for both
statements.)

Since v, is in S, there exists a subsequence f, and elements w; in
PV(f,,i) such that limw, = v,. We may assume lw, — v, < b/2 and
! fo, — f1i < b/2. Then we obtain

1(fa, = wd) — (f = el < fu, — fIL 41wy — vl < b,

whence it follows that

Wny = wi — ezl << fa, — wil.

Now we have w; + cze€ V and w, € Py(f, ), which yields w; + cz e Py(fz)-
Therefore, vy + cz = lim(w; + c¢z), and, hence, vy -+ cz €S, . This contra-
dicts the assumption that 6 was the maximal number such that v, S, .
Thus, we have proved that Py, is Isc.

Finally, we show by an example that Theorem 5.5 is not correct if the
hypothesis that V' has property (P} is omitted. We note that this example
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also shows that the conclusions (a) =- (b) of [8, Theorem 6] and (A) = (B)
of [9, Theorem 2} are not valid.
Let X be the space R® provided with the maximum norm

0y, Xp 0 X))l t=max( oy L Xy L xg ).
For V' we take the cone
Vi lxg o x, x) e RE (x4 x9)® + x5 000 xy 1,

which fails to have property (P). We determine P, along the straight line
{(1, x5, 0) : x, € R}, and obtain that P, is the whole segment [(0, 0, 0), (0, 0, 1}]
for | x, | <C 1, and Py is just one point of the circle

{(rp, x5, DER: () - 1P x? == 1)

for | x, | > 1. Thus, P, fails to be continuous.

REFERENCES

1. D. AMIr aAnD F. DeutscH, Suns, moons, and quasi-polyhedra, J. Approximation
Theory 6 (1972), 176-201.

2. C. Bercg, “Espaces Topologiques, Fonctions Multivoques,” Second ed., Dunod,
Paris, 1966.

3. F. F. BonsaLt, B. E, CaIn, aND H. SCHNEIDER, The numerical range of a continuous
mapping of a normed space, Aequationes Marh. 2 (1969), 86-93.

4. B. Brosowskr, ‘“‘Nicht-lincare Tschebyscheff-Approximation,” Bibliographisches
Institut, Mannheim, 1968.

5. B. Brosowsk1, Zur nicht-linearen Tschebyscheff-Approximation an Funktionen mit
Werten in einem unitiren Raum, Mathematica (Cluj) 11 (34) (1969), 53-60.

6. B. Brosowsk1, Zur Charakterisierung von Minimalldsungen im Raume C[Q, H],
Bul. Inst. Politehn. lasi 15 (1969), 31-34.

7. B. BRosowskI AND F. DEuTscH, On some geometrical properties of sums, preprint.

8. B. Brosowski, K.-H. Horrmann, E. ScHAFER, AND H. WEBER, Stetigkeitssdtze fir
metrische Projektionen Il. (P)-Riume und T .-Stetigkeit der metrischen Projektion.
Max-Planck-Institut fir Physik und Astrophysik, MPI-PAE/Astro 19, 1969.

9. B. BrosowskI, K.-H. HOFFMANN, E. SCHAFER, AND H. WEBER, Stetigkeitssiitze fiir
metrische Projektionen, in “Iterationsverfahren, numerische Mathematik, Approxi-
mationstheorie,” ISNM 15, pp. 11-17, Birkhduser-Verlag, Basel, 1970.

10. B. Brosowski AND R. WrgMaxxy, Charakterisierung bester Approximationen in
normierten Vektorrdumen, J. Approximation Theory 3 (1970), 369-397.

11. A. L. BrRowN, Best n-dimensional approximation to sets of functions, Proc. London
Math. Soc. 14 (1964), 577-594.

12. D. F. Cubia, The geometry of Banach spaces. Smoothness, Trans. Amer. Math. Soc.
110 (1964), 284-314.

13. J. Ducunbir, “Topology,™ second ed., Allyn and Bacon, Boston, 1966.
14. 1. SINGER, “‘Best Approximation in Normed Linear Spaces by Elements of Linear
Subspaces,” Springer-Verlag, Berlin/Heidelberg/New York, 1970.

Printed tn Belgium



